Decoupling of DNA damage response signaling from DNA damages underlies temozolomide resistance in glioblastoma cells☆

نویسندگان

  • Bo Cui
  • Stewart P. Johnson
  • Nancy Bullock
  • Francis Ali-Osman
  • Darell D. Bigner
  • Henry S. Friedman
چکیده

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults. Current therapy includes surgery, radiation and chemotherapy with temozolomide (TMZ). Major determinants of clinical response to TMZ include methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter and mismatch repair (MMR) status. Though the MGMT promoter is methylated in 45% of cases, for the first nine months of follow-up, TMZ does not change survival outcome. Furthermore, MMR deficiency makes little contribution to clinical resistance, suggesting that there exist unrecognized mechanisms of resistance. We generated paired GBM cell lines whose resistance was attributed to neither MGMT nor MMR. We show that, responding to TMZ, these cells exhibit a decoupling of DNA damage response (DDR) from ongoing DNA damages. They display methylation-resistant synthesis in which ongoing DNA synthesis is not inhibited. They are also defective in the activation of the S and G2 phase checkpoint. DDR proteins ATM, Chk2, MDC1, NBS1 and gammaH2AX also fail to form discrete foci. These results demonstrate that failure of DDR may play an active role in chemoresistance to TMZ. DNA damages by TMZ are repaired by MMR proteins in a futile, reiterative process, which activates DDR signaling network that ultimately leads to the onset of cell death. GBM cells may survive genetic insults in the absence of DDR. We anticipate that our findings will lead to more studies that seek to further define the role of DDR in ultimately determining the fate of a tumor cell in response to TMZ and other DNA methylators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SGEF Is Regulated via TWEAK/Fn14/NF-κB Signaling and Promotes Survival by Modulation of the DNA Repair Response to Temozolomide.

UNLABELLED Glioblastoma (GB) is the highest grade and most common form of primary adult brain tumors. Despite surgical removal followed by concomitant radiation and chemotherapy with the alkylating agent temozolomide, GB tumors develop treatment resistance and ultimately recur. Impaired response to treatment occurs rapidly, conferring a median survival of just fifteen months. Thus, it is necess...

متن کامل

Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms.

PURPOSE In this study, we investigated the mechanisms by which temozolomide enhances radiation response in glioblastoma cells. EXPERIMENTAL DESIGN Using a panel of four primary human glioblastoma cell lines with heterogeneous O(6)-methylguanine-DNA methyltransferase (MGMT) protein expression, normal human astrocytes, and U87 xenografts, we investigated (a) the relationship of MGMT status with...

متن کامل

Cancer Therapeutics Insights Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the Methylating Anticancer Drug Temozolomide

The major cytotoxic DNA adduct induced by temozolomide and other methylating agents used in malignant glioma and metastasized melanoma therapy is O-methylguanine (O-MeG). This primary DNA damage is converted by mismatch repair into secondary lesions, which block replication and in turn induce DNA double-strand breaks that trigger the DNA damage response (DDR). Key upstream players in the DDR ar...

متن کامل

Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide.

The major cytotoxic DNA adduct induced by temozolomide and other methylating agents used in malignant glioma and metastasized melanoma therapy is O(6)-methylguanine (O(6)-MeG). This primary DNA damage is converted by mismatch repair into secondary lesions, which block replication and in turn induce DNA double-strand breaks that trigger the DNA damage response (DDR). Key upstream players in the ...

متن کامل

Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma

Real-time monitoring of drug efficacy in glioblastoma multiforme (GBM) is a major clinical problem as serial re-biopsy of primary tumours is often not a clinical option. MGMT (O(6)-methylguanine DNA methyltransferase) and APNG (alkylpurine-DNA-N-glycosylase) are key enzymes capable of repairing temozolomide-induced DNA damages and their levels in tissue are inversely related to treatment effica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2010